GCE Examinations

Advanced Subsidiary / Advanced Level

Decision Mathematics

Module D1

Paper A

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Dave Hayes
© Solomon Press

1. (a) e.g. $A B C D F E A$
(b)

e.g. start with $A C$ on inside, move $B D$ outside, giving plane drawing
2. (a)

$\begin{array}{lllllll}\text { giving } & 46 & 35 & 24 & 23 & 11 & 10\end{array}$
M2 A2
(b) $7+6+5+4+3+2+1=28$ A1
(c)

11 could not go into $1^{\text {st }}$ bin but could fit in $2^{\text {nd }}$ bin
M1 A1

B1

M2 A3
(b) B, F, H, M, O, P

M1 A1
(c) 47 days

A1
(8)
4. (a)

(b) initial matching shown by

B1
M1 A1
M1
M1 A1

label J - label $I=5=$ weight $I J$
label I - label $G=8=$ weight $G I$
label $G-$ label $E=3=$ weight $E G$
label $E-$ label $A=10=$ weight $A E$
M1 A1
so $A E G I J$ is path of least weight; weight $=26$
(b) there are no other paths of least weight

B1
these would have been revealed by the backward scan
B1
(c) e.g. finding shortest distance by road between two towns

B1
(12)
6.
(a) $C_{1}=80 ; C_{2}=94$
(b) minimum cut: $\{S, A, B, C, D, F\} \mid\{E, T\}=57$
(c) $x=15, y=10, z=36$
(d) augment SCET by 2 and SCAET by 1 giving maximum flow below

this is maximum flow as it is equal to the minimum cut
B1
(15)
7. (a) maximise $P=10 x+12 y+8 z$ given

$$
\begin{aligned}
& x+2 y+4 z \leq 20 \\
& 4 x+3 y+14 z \leq 75 \\
& 5 x+2 y+10 z \leq 60 \\
& x \geq 0, \quad y \geq 0, \quad z \geq 0
\end{aligned}
$$

M2 A2
(b) using slack variables s, t and u gives

$$
\begin{aligned}
x+2 y+4 z+s & =20 \\
4 x+3 y+14 z+t & =75 \\
5 x+2 y+10 z+u & =60
\end{aligned}
$$

objective function becomes

$$
R-10 x-12 y-8 z=0
$$

hence the given initial tableau
(c) to change inequalities into equations
(d) θ values are 10,25 and 30 so pivot row is $1^{\text {st }}$ row
$2^{\text {nd }}$ tableau is:

Basic Var.	x	y	z	s	t	u	Value
y	$\frac{1}{2}$	1	2	$\frac{1}{2}$	0	0	10
t	$\frac{5}{2}$	0	8	$-\frac{3}{2}$	1	0	45
u	4	0	6	-1	0	1	40
R	-4	0	16	6	0	0	120

M2 A2
choose to increase x next
θ values are 20,18 and 10 so pivot row is $3^{\text {rd }}$ row
$3^{\text {rd }}$ tableau is:

Basic Var.	x	y	z	s	t	u	Value
y	0	1	$\frac{5}{4}$	$\frac{5}{8}$	0	$-\frac{1}{8}$	5
t	0	0	$\frac{17}{4}$	$-\frac{7}{8}$	1	$-\frac{5}{8}$	20
x	1	0	$\frac{3}{2}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	10
R	0	0	22	5	0	1	160

(e) optimal solution as all values on the objective row are ≥ 0
company donates 10 two-person and 5 four-person boats \quad B1
(17)
Performance Record - D1 Paper A

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	$\begin{aligned} & \hline \text { graphs, } \\ & \text { planarity } \end{aligned}$	$\begin{array}{\|l} \hline \text { bubble } \\ \text { sort, } \\ \text { bin } \\ \text { packing } \end{array}$	$\begin{aligned} & \text { critical } \\ & \text { path } \end{aligned}$	matching	Dijkstra's	flows	simplex	
Marks	7	8	8	8	12	15	17	75
Student								

